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We study the effect of the spin-orbit interaction on quantum gate operations based on the spin exchange
coupling where the qubit is represented by the electron spin in a quantum dot or a similar nanostructure.
Our main result is the exact cancellation of the spin-orbit effects in the sequence producing the quan-
tum XOR gate for the ideal case where the pulse shapes of the exchange and spin-orbit interactions are
identical. For the nonideal case, the two pulse shapes can be made almost identical and the gate error is
strongly suppressed by two small parameters, the spin-orbit constant and the deviation of the two pulse
shapes. We show that the dipole-dipole interaction leads only to very small errors in the XOR gate.
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The spin 1�2 of an electron is a “natural” representa-
tion of a quantum bit (qubit) since it comprises exactly
two levels; there are no additional degrees of freedom into
which the system could “leak” and thereby cause errors
in a quantum computation. In addition to this, magneto-
optical experiments have revealed unusually long spin co-
herence times in doped semiconductors, exceeding 100 ms
[1], thus making electron spins in semiconductors suitable
candidates for a scalable quantum computer architecture.
These advantages have motivated the idea of spin-based
solid-state quantum computation using electron spins in
coupled quantum dots [2], where the required two-spin
coupling is provided by the Heisenberg exchange inter-
action between the two spins in adjacent quantum dots.
The microscopic origin of the exchange coupling lies in
the virtual tunneling of electrons from one quantum dot to
the other and back, and there are several external physical
parameters (gate voltages, magnetic field, etc.) which can
in principle be used for controlled quantum gate operation
[3]. Subsequent schemes [4–8] for solid-state quantum
computation rely also on the exchange interaction between
spins, and it has been pointed out that the exchange inter-
action alone (without single-spin manipulation) is in prin-
ciple sufficient for universal quantum computation [9,10].

However, the two-level structure of the spin of the elec-
tron is only approximate if one includes relativistic ef-
fects which lead to spin-orbit coupling [11]. The exchange
Hamiltonian can acquire anisotropic terms due to spin-
orbit coupling [12,13]. For conduction band electrons in
single GaAs dots, the spin-orbit energy is typically small
[3]; however, it was recently pointed out by Kavokin [14]
that the spin-orbit coupling can be relevant for tunneling
between two dots, leading to an anisotropy in the result-
ing spin Hamiltonian, and it was suggested that it may
lead to additional spin decoherence. Subsequently, Bones-
teel et al. [15] have demonstrated that the first-order effect
of the spin-orbit coupling during quantum gate operations
can be eliminated by using time-symmetric pulse shapes
for the coupling between the spins.
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In this paper, we present a different method for deal-
ing with the spin-orbit interaction. Our main result is that
the spin-orbit effects exactly cancel in the gate sequence
[Eq. (2)] required to produce the quantum XOR (CNOT)
gate, provided that the pulse form for the spin-orbit and
the exchange couplings are the same. Since XOR is suffi-
cient to assemble any quantum computation together with
single-qubit operations, this result has far-reaching con-
sequences for spin-based quantum computation with the
exchange interaction; it ascertains that the spin-orbit cou-
pling can be dealt with in any quantum computation. In
reality, the pulse shapes for the exchange and the spin-orbit
coupling cannot be chosen completely identical. Typically,
however, we can choose two pulse shapes which are very
similar and show that our result still holds to a very good
approximation, i.e., the effect of the spin-orbit coupling
is still strongly suppressed. Finally, we discuss the effect
of the dipole coupling between adjacent spins, providing
another anisotropic coupling. The anisotropy due to an in-
homogeneous magnetic field was studied in [16].

The spin-orbit coupling for a conduction-band electron
(momentum k, spin S) can be written as Hso � h�k� ?

S. In two dimensions, the Rashba term [17] h1�k� �
a1�ky , 2kx , 0� arises from an asymmetric quantum well
or from an external field. The absence of the inversion
symmetry, e.g., in GaAs, causes a term [18] h2�k� �
a2�2kx, ky , 0�. Such a term was already shown to exist
in [19]. The isotropic Heisenberg coupling with exchange
energy J and the anisotropic exchange between two lo-
calized spins S1 and S2 �s � 1�2� are combined in the
Hamiltonian [15] H�t� � J�t� �S1 ? S2 1 A�t��. We di-
vide A�t� into asymmetric and symmetric parts [14],

A�t� � b�t� ? �S1 3 S2� 1 g�t� �b�t� ? S1� �b�t� ? S2� ,

(1)

where b � �c1jih�k� jc2� is the spin-orbit field, jci� the
ground state in dot i � 1, 2, and g � O�b0�. For A � 0,
© 2002 The American Physical Society 047903-1



VOLUME 88, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 28 JANUARY 2002
the quantum XOR gate can be obtained by applying H�t�
twice, together with single-spin rotations [2,20],

Ug � eipSz
1 �2e2ipSz

2�2UeipSz
2 U , (2)

where U is the (unitary) time-ordered exponential U �
T exp�2i

Rts�2
2ts�2 H�t� dt�. Here ts denotes the switching

time, during which the spin interactions via tunneling are
turned on. In the case A � 0, the Hamiltonian commutes
with itself at different times and thus U is only a function
of the integrated interaction strength,

w �
Z ts�2

2ts�2
J�t�dt , (3)

with w fi 0. In particular, we obtain the desired quan-
tum gate (up to a trivial change of basis) Ug � UCPF �
eipS

y
2 �2UXORe2ipS

y
2 �2 if we choose w � p�2 (in this case,

U is the “square-root of swap” gate [2]).
First, we study the case A fi 0, retaining the property

that H�t� commutes with itself at different times. This is
the case if b and g (and thus A) are time independent, i.e.,
if the anisotropic part of the Hamiltonian H is proportional
to the isotropic exchange term. This allows us to fix a
coordinate system in which b points along the z axis, and
in which the anisotropy can be written as

A � b�Sx
1 S

y
2 2 S

y
1 Sx

2 � 1 dSz
1Sz

2 , (4)

with d � gb2. In this basis H commutes with the z com-
ponent Sz � Sz

1 1 Sz
2 of the total spin, �H, Sz� � 0, and

thus j""� and j##�, being nondegenerate eigenstates of Sz ,
are also eigenstates of H. Note that in their energy eigen-
value J�1 1 d��4 there is no contribution from the first
term in Eq. (4). In the Sz � 0 subspace we choose a basis
consisting of the spin singlet js� � �j"#� 2 j#"��

p
2 and the

triplet jt� � �j"#� 1 j#"���
p

2 because this choice makes
the isotropic part JS1 ? S2 of the Hamiltonian diagonal.
The complete Hamiltonian in the basis 	j""�, js�, jt�, j##�
 is

H�t� �
J�t�
2

0
BBBB@

1 1 d 0 0 0
0 21 ib 0
0 2ib 1 0
0 0 0 1 1 d

1
CCCCA , (5)

where we have added an irrelevant term J�1 1 d��4 pro-
portional to the unity matrix.

Exponentiation of Eq. (5) in the Sz � 0 subspace yields

UjSz�0 �

µ
c 1 is�x

2bs

bs

c 2 is�x

∂
, (6)

where c � cos�xw�2�, s � sin�xw�2�, x �
p

1 1 b2,
and where w is defined in Eq. (3). Since exp�ipSz

2 � �
2isx in the Sz � 0 subspace, we find UeipSz

2 UjSz�0 �
2isx, i.e., the dependence of UjSz�0 on the phase w as
well as on the spin-orbit parameter b as shown in Eq. (6)
cancels exactly in the sequence Eq. (2). In other words,
when we construct the XOR gate there will be no effect of
the time-independent anisotropic terms A in the Sz � 0
subspace. By a proper choice of w, we can also eliminate
the effect of the anisotropy for the states j""� and j##�. This
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can be seen by writing down the full unitary operator
Eq. (2) using the Hamiltonian Eq. (5),

Ug � diag���ie2iw�11d�, 1, 1, 2ie2iw�11d���� , (7)

where diag�x1, . . . , x4� denotes the diagonal matrix with
diagonal entries x1, . . . , x4. The pulse strength w and the
spin-orbit parameters only enter U in the Sz � 61 sub-
spaces. We would like Ug to be the conditional phase
flip operation UCPF � diag�1, 1, 1, 21�, being equivalent
to the XOR operation up to a basis change. Indeed, the con-
dition Ug � UCPF can be fulfilled for w � p�2�1 1 d�.

We have shown that in the case where the anisotropic
term in the Hamiltonian is proportional to the isotropic
term (i.e., A � const), we can completely eliminate the
effect of the anisotropy by a proper choice of the pulse
strength w. In real systems, however, the anisotropic terms
in the Hamiltonian H cannot be expected to be exactly pro-
portional to J�t�, i.e., A�t� is time dependent. In general,
both b and g depend on time. Under these circumstances,
we cannot exactly eliminate the effect of the anisotropy be-
cause of the time ordering in the definition of U and since
the Hamiltonian does, in general, not commute with itself
at different times, �H�t�, H�t 0�� fi 0.

In the following, we estimate the errors due to the
anisotropy in the Hamiltonian in the case where A�t� is
only weakly time dependent. Subsequently, we present
a procedure which allows us to achieve exactly this situa-
tion (i.e., a weakly time-dependent A). We write A�t� �
A0 1 DA�t�, where A0 is constant, as in Eq. (4), and
DA�t� is the small time-dependent deviation from A0.
The Hamiltonian is written as the sum H�t� � H0�t� 1

H 0�t� where H0�t� is given by Eq. (5) and

H 0�t� � J�t�DA�t� � J�t� �Db�t� ? �S1 3 S2�

1 Dg�t� �b ? S1� �b ? S2�� .

(8)

Note that in the symmetric part we have already omitted
terms which are of the order of DbDg. This Hamilto-
nian generates a unitary time evolution U � U0 1 DU,
where U0 � T exp�2i

Rts�2
2ts�2 H0�t� dt� is the contribution

due to H0. The explicit form of DU is rather compli-
cated; however, we are only interested in estimating
the gate error DUg � Ug 2 UCPF caused by H 0�t�
(note that DUg is not unitary). For this purpose we
work in the interaction picture with respect to H0�t�,
where UI � U

y
0 U � T exp�2i

Rts�2
2ts�2 H 0

I�t� dt� and

H 0
I � U

y
0 H 0U0. In this representation, the deviation

DU from the “ideal” time evolution U becomes DUI �
UI 2 1 � 2i

Rts�2
2ts�2 H 0

I�t� dt 1 O�H 02
I �. The norm of

the gate error kDUgk � max�c jc��1

q
�cjDU

y
g DUgjc�

(to lowest order in H 0) can now be estimated as follows,

kDUgk & 2kDUk � 2kU0DUIk � 2kDUIk

& 2ts max
jtj#ts�2

kH 0�t�k � 2D , (9)
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where the first equality comes from Eq. (2) and the uni-
tarity of the involved quantum gates. Using b ø 1, we
approximate kH 0�t�k & jJ�t�Db�t�j�2, since the second
term in H 0 is O�b2�. We use Db�t� � b�t� 2 b0 to write

D �
jwjb0

2
max

jtj#ts�2

Ç
J�t�
J0

∑
b�t�
b0

2 1

∏Ç
, (10)

where J0 denotes the average exchange coupling J0 �
w�ts fi 0. Note that the position of the dots is fixed
during the switching process, thus b�t��jb�t�j � const
[14]. For the XOR gate, w � p�2. The error probabil-
ity for the described gate operation can now be estimated
as e � kDCoutk

2 # kDUgCink
2 # kDUgk

2 & 4D2.
In order to obtain an estimate for D, we consider the

case of coupled quantum dots in a 2DEG. For parabolic
confinement potential V �r� � mvr2�2, the ground-state
orbitals are c�r� � �pa2

B�21 exp�2r2�2a2
B�, where aB �p

h̄�mv is the effective Bohr radius of the electronic or-
bitals and m is the effective electron mass. If two such
quantum dots containing one electron each are separated
by a distance 2a, the exchange coupling between the spins
of the electrons at zero magnetic field is given by [3]

J�d, q� �
h̄v0

sinh�2qd2�

Ω
c�e2qd2

I0�qd2� 2 1�

1
3q

4
�1 1 qd2�

æ
, (11)

where I0 is the zeroth order Bessel function, d � a�a0
B

the dimensionless ratio between the half-distance a and the
effective Bohr radius a0

B �
p

h̄�mv0, c characterizes the
strength of the (bare) Coulomb interaction (h̄v0 � 6 meV
and c � 1.71 in our numerical example), and q � v�v0
is the strength of the confinement v in units of its mini-
mum value v0. Following [14], we find for both h1 and h2
that b�d, q� � jJ�d, q�b�d, q�j � b0

p
q d exp�22qd2�,

where b0 � ai�a0
B, i � 1, 2. For h2 in a 5 nm wide

�100� GaAs quantum well a2 � 2 meV nm, or b � 0.02
at d � q � 1. In Fig. 1, we plot J�d, q� and b�d, q�.

The switching process can be modeled, e.g., by a
time-dependent distance d between the dots or by a

1 2 3 4
0

0.1

0.2

0.5 1 1.5 2
0

0.25

0.5

0.75

q=

d

b

ω/ω0

b

J
J

FIG. 1. The exchange coupling J (dashed line) in units of
h̄v0 and the spin-orbit field b � bJ (solid line) in units of
b0 for two electron spins located in adjacent quantum dots as
a function of the dimensionless parameter q � v�v0 at fixed
interdot distance d � 1 (inset: as a function of d at fixed q �
1), where h̄v is the (variable) single-dot confinement energy,
v0 is the (fixed) minimum value of v, and b0 is the spin-orbit
parameter. For this plot, h̄v0 � 6 meV and c � 1.71.
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time-dependent confinement strength q. Here, we choose
the latter possibility and use a pulse q�t� � v�t��v0 �
cosh2�at�ts�, where we choose a � 4. This pulse shape
is suited for adiabatic switching [3,21] and leads to a pulsed
exchange interaction J�t� � J���d, q�t���� and spin-orbit field
b�t� � b���d, q�t����, where 2ts�2 # t # ts�2. The pulse
shapes of the resulting exchange coupling J�t� and
spin-orbit field b�t� are plotted in Fig. 2. In our example,
the switching time amounts to ts � p�2J0 � 140 ps.
Note that a pulsed switching by electrostatic lowering of
the tunneling barrier between the dots or by applying a
magnetic field results in a very similar time dependence
of J and b and a similar analysis could also be done in
these cases. If the pulse shapes of b and J were identical,
then the effect of the spin-orbit coupling in the XOR gate
could be eliminated exactly (as explained above).

The optimal choice of b0 (i.e., the one which minimizes
D) in our numerical example turns out to be b0 � b�t �
0.1ts� and from Eq. (10) we find D � 7 3 1023. There-
fore, the gate errors occur at a rate e & 4D2 � 2 3 1024

which is around the currently known threshold for fault
tolerant quantum computation [22] and could therefore be
corrected by quantum error correction. Note that in cases
where the error e is too large for quantum error correc-
tion, it can be further reduced at the cost of a slower gate
operation. This can be achieved by designing pulses with
smaller intensity, where there is a long period of constant
A between the rise and fall of the pulse.

We finally include the dipole-dipole interaction Hd �
h�S1 ? S2 2 3�S1 ? â� �S2 ? â��, being another source for
anisotropic coupling among the spins S1 and S2, into our
discussion. Here â denotes the unit vector pointing from
the center of one to that of the other dot. The coupling pa-
rameter h � m0g2m

2
B�4p�2a�3 is typically much smaller

than the spin-orbit energy, for g � 2 and a � 20 nm we
obtain h � 3 ? 10212 eV, corresponding to a dipole field
of Bd � h�mB � 0.5 mG. Nevertheless, we show here
that in cases where the dipole interaction matters (e.g., if
g is very large), it can again be dealt with by using the

− 0.5 0 0.5
t / τs

J(t)

b(t)

FIG. 2. Pulse form of the exchange coupling J�t� (dashed line)
and the spin-orbit field b�t� � J�t�b�t� (solid line) for a simple
model involving two coupled quantum dots which are coupled
and decoupled with the time-dependent confinement strength
q�t� � v�t��v0. For the distance between the dots we choose
d � 1. The choice of the vertical scaling of the two pulses in
this graph is such that the deviations of one pulse from the other
are (approximately) minimal.
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methods described above. An essential difference between
the dipole and the spin-orbit interactions is that the dipole
interaction between two spins located in adjacent quantum
dots with fixed distance cannot be changed by applying
gate voltages or static magnetic fields and therefore re-
mains constant during the entire switching process and in
the “idle” time between the switching. In the following,
we assume for simplicity that A is independent of time,
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as in the first part of our discussion. In addition to this, we
assume for the moment that J is also constant.

When investigating the combined effect of the spin-or-
bit and dipole couplings, we will restrict ourselves to
the two cases h1 and h2. For h2, the spin-orbit field
is parallel to the interdot coupling direction b k â
and thus the second term in Hd has the same form
as the symmetric term in Eq. (4). We set j � h�J
and find
H �
J

2

0
BBBB@

1 1 d 2 2j 0 0 0
0 21 2 j ib 0
0 2ib 1 1 j 0
0 0 0 1 1 d 2 2j

1
CCCCA . (12)

Using Eqs. (2) and (3) with w � p�2�1 1 d 2 2j�, we exactly obtain Ug � UCPF, i.e., the combined effect of the
spin-orbit and dipole coupling is eliminated. For h1, we find b�â. Choosing â along the x axis we obtain

H �
J

2

0
BBBB@

1 1 d 1 j 0 0 23j�2
0 21 1 j�2 ib 0
0 2ib 1 2 j�2 0

23j�2 0 0 1 1 d 1 j

1
CCCCA . (13)
Setting w � p�2�1 1 d 1 j�, we obtain again Ug �
UCPF, being related to UXOR by a simple basis change (see
above). Therefore it is possible to eliminate the spin-orbit
and dipole coupling effects also in this case.

In principle, the analysis for time-dependent exchange
and spin-orbit coupling can be repeated including the
dipole interaction. However, the dipole interaction cannot
easily be switched on and off, and therefore, the “pulse
shape” of the dipole interaction is a constant, i.e., very
different from those of the exchange and spin-orbit
couplings (Fig. 2). Nevertheless, since the dipole inter-
action is usually very small, we can still use the estimate
Eq. (9) to obtain a reasonable upper bound on the error
by setting H 0 � Hd. We obtain Dd � tsh � jwjh�J0
which for typical numbers (as above, J0 � meV) is tiny,
Dd � 1029. The error ed � 4D

2
d � 4�tsh�2 caused by

the dipole interaction is therefore negligible in typical
situations, and we have to take it into account only if for
some reason (e.g., very large g) the dipole interaction
becomes unusually large.

We conclude that while the spin-orbit interaction can
cause weak decoherence in the combination with phonons
[23], its direct effect on the quantum gate operation nearly
cancels if the pulse shapes of the exchange and spin-orbit
couplings are made as similar as possible. We have shown
that in a typical case involving two tunnel-coupled quan-
tum dots this is easily achievable. A simple estimate shows
that the dipole interaction between the spins which also
generates anisotropic terms in the Hamiltonian is usually
much smaller than the spin-orbit interaction and can be ne-
glected. Nevertheless, we have shown that in cases where
the dipole effects are unusually large, the combined effect
of spin-orbit and dipole coupling can be corrected with
high precision.
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